Hexosamine pathway but not interstitial changes mediates glucotoxicity in pancreatic β-cells as assessed by cytosolic Ca2+ response to glucose

نویسندگان

  • Kazuhiro Yanagida
  • Yuko Maejima
  • Putra Santoso
  • Zesemdorj Otgon-Uul
  • Yifei Yang
  • Kazuya Sakuma
  • Kenju Shimomura
  • Toshihiko Yada
چکیده

Hyperglycemia impairs insulin secretion as well as insulin action, being recognized as the glucotoxicity that accelerates diabetes. However, the mechanism underlying the glucotoxicity in pancreatic β-cells is not thoroughly understood. Hyperglycemia alters glucose metabolism within β-cells and interstitial conditions around β-cells, including elevated osmolarity and increased concentrations of insulin and ATP released from overstimulated β-cells. In this study, to explore direct effects of these alterations on β-cells, single β-cells isolated from rat islets were cultured for 3 days with high (22.3 mM) glucose (HG), compared with control 5.6 mM glucose, followed by their functional assessment by measuring cytosolic Ca2+ concentration ([Ca2+]i). The [Ca2+]i response to a physiological rise in glucose concentration to 8.3 mM was impaired in b-cells following culture with HG for 3 days, while it was preserved in β-cells following culture with non-metabolizable L-glucose and with elevated osmolarity, insulin and ATP. This HG-induced impairment of [Ca2+]i response to 8.3 mM glucose was prevented by adding azaserine, a hexosamine pathway inhibitor, into HG culture. Conversely, culture with glucosamine, which increases the hexosamine pathway flux, impaired [Ca2+]i response to 8.3 mM glucose, mimicking HG. These results suggest that the HG-associated abnormal glucose metabolism through hexosamine pathway, but not elevated osmolarity, insulin and ATP, plays a major role in the glucotoxicity to impair the secretory function of pancreatic β-cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

[Ca2+]i-reducing action of cAMP in rat pancreatic β-cells: involvement of thapsigargin-sensitive stores.

In the present study, we examined the ability of adenosine 3',5'-cyclic monophosphate (cAMP) to reduce elevated levels of cytosolic Ca2+ concentration ([Ca2+]i) in pancreatic β-cells. [Ca2+]iand reduced pyridine nucleotide, NAD(P)H, were measured in rat single β-cells by fura 2 and autofluorescence microfluorometry. Sustained [Ca2+]ielevation, induced by high KCl (25 mM) at a basal glucose conc...

متن کامل

Impact of Magnesium Deficiency on Pancreatic β-Cell Function in Type 2 Diabetic Nigerians

Objective: Pancreatic b-cell dysfunction is described to be present at the diagnosis of type 2 diabetes mellitus (T2DM) and progressively deteriorated with disease duration. However, its progression is variable and potentially influenced by several factors. The Magnesium (Mg) deficiency mediates insulin resistance but reports regarding its role in pancreatic β-cell dysfunction are scarce and co...

متن کامل

The Mitochondrial Ca2+ Uniporter MCU Is Essential for Glucose-Induced ATP Increases in Pancreatic β-Cells

Glucose induces insulin release from pancreatic β-cells by stimulating ATP synthesis, membrane depolarisation and Ca(2+) influx. As well as activating ATP-consuming processes, cytosolic Ca(2+) increases may also potentiate mitochondrial ATP synthesis. Until recently, the ability to study the role of mitochondrial Ca(2+) transport in glucose-stimulated insulin secretion has been hindered by the ...

متن کامل

NNT reverse mode of operation mediates glucose control of mitochondrial NADPH and glutathione redox state in mouse pancreatic β-cells

OBJECTIVE The glucose stimulation of insulin secretion (GSIS) by pancreatic β-cells critically depends on increased production of metabolic coupling factors, including NADPH. Nicotinamide nucleotide transhydrogenase (NNT) typically produces NADPH at the expense of NADH and ΔpH in energized mitochondria. Its spontaneous inactivation in C57BL/6J mice was previously shown to alter ATP production, ...

متن کامل

Glucagon-like peptide 1 stimulates insulin secretion via inhibiting RhoA/ROCK signaling and disassembling glucotoxicity-induced stress fibers.

Chronic hyperglycemia leads to pancreatic β-cell dysfunction characterized by diminished glucose-stimulated insulin secretion (GSIS), but the precise cellular processes involved are largely unknown. Here we show that pancreatic β-cells chronically exposed to a high glucose level displayed substantially increased amounts of stress fibers compared with β-cells cultured at a low glucose level. β-C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014